
Securing ROS
robotics platforms
March 2020

Introduction

The Robot Operating System (ROS) is a popular open-source platform for
advanced robotics. Modern robots are deployed in both local warehouses and
isolated remote sites similar to legacy Supervisory Control and Data Acquisition
(SCADA) systems. SCADA systems are widely used in industrial (manufacturing,
refining, generation, and fabrication, etc.), infrastructure (gas and oil pipelines,
water treatment and distribution, etc.) and facility processes (HVAC, access,
etc.). They were designed to be open, robust, easy to operate, and repair, but
security was not part of the design until the proliferation of the Internet.
Similar to SCADA, some of these robots are not adequately secured against
attacks. By building your robot on Ubuntu, there are easy steps to secure your
robot against attackers.

For this hardening exercise, we will use the TurtleBot3 platform from Robotis as
the reference architecture in preparing your robot for deployment to a
production environment. The focus will be on securing the underlying operating
system beneath ROS 1 or 2 - Ubuntu 18.04 LTS. Although we use the Raspberry
Pi based model of TurtleBot3 for demonstration purposes, most of the
suggestions apply to robots based on other architectures such as x86, etc. If
there are nuances related to a particular architecture, those are named explicitly
in the material that follows.

Opportunistic attacks are the most prevalent types of attacks, and the majority
of breaches involve attackers finding an easy target. The steps outlined herein
will help you put up defences against those opportunists. Of course, there are
also Advanced Persistent Threats (APTs) which are attacks that are highly
customised to a particular organisation or institution. Comprehensive security
against APTs is beyond the scope of this whitepaper although some items in this
whitepaper should help you against APTs.

http://For this hardening exercise, we will use the TurtleBot3 platform from Robotis as the reference architecture in preparing your robot for deployment to a production environment. The focus will be on securing the underlying operating system beneath ROS 1 or 2 - Ubuntu 18.04 LTS. Although we use the Raspberry Pi based model of TurtleBot3 for demonstration purposes, most of the suggestions apply to robots based on other architectures such as x86, etc. If there are nuances related to a particular architecture, those are named explicitly in the material that follows.

Opportunistic attacks are the most prevalent types of attacks, and the majority of breaches involve attackers finding an easy target. The steps outlined herein will help you put up defences against those opportunists. Of course, there are also Advanced Persistent Threats (APTs) which are attacks that are highly customised to a particular organisation or institution. Comprehensive security against APTs is beyond the scope of this whitepaper although some items in this whitepaper should help you against APTs.

2

Default installation

In the instructions of the TurtleBot3, they recommend installing the Ubuntu
MATE desktop. Ubuntu MATE desktop is great for a developer on their
workstation. But as an operating system (OS) for a robot, a graphical user
interface (GUI) is not always necessary. If possible, install Ubuntu Server 18.04
LTS. This forgoes the X11 system, which will increase the amount of available
memory, reduce startup time, and reduce the attack surface due to the smaller
number of packages installed. The difference between resources used and attack
surface decrease, see tables 1.0-1.2 below.

Version Total Packages

Ubuntu Server Ubuntu 18.04.3 LTS 496

Ubuntu MATE Desktop Ubuntu 18.04.2 LTS* 1793

Table 1.0 - Number of packages installed
(*Latest version available at the time of this writing)

Total Used Free Shared
Buff/
cache

Available

Ubuntu Server 912M 106M 439M 4.4M 366M 786M

Ubuntu MATE
Desktop

912M 423M 54M 9.1M 434M 415M

Table 1.1 - Memory consumption

Size Used Available Use% Mounted on

Ubuntu Server 30G 1.5G 27G 6% /

Ubuntu MATE
Desktop

30G 4.2G 25G 15% /

Table 1.2 - Storage consumption

3

By installing the Ubuntu Server image, you have fewer associated packages to
update and keep secure. To do this, it is as simple as downloading the image,
running dd, and booting from the SD card. Make sure to enable the SSH server.
For continuing setup over ethernet, the interface is already configured for DHCP.
On the other hand, if you are going to use WiFi for configuration, you need to
enable it. Replace “YOUR_SSID_NAME” and “YOUR_WPA2_PASSWORD” with
your values, paste the script below in your console, and hit enter to run it.

sudo tee /etc/netplan/01-netcfg.yaml <<EOF

network:

 version: 2

 renderer: networkd

 wifis:

 wlan0:

 dhcp4: yes

 access-points:

 “YOUR_SSID_NAME”:

 password: “YOUR_WPA2_PASSWORD”

EOF

Then run the following commands to bring WiFi up. Note that it will take a few
seconds for the interface to associate and get an address.

sudo chmod 0600 /etc/netplan/01-netcfg.yaml

sudo netplan generate

sudo netplan apply

Remove default users such as “ubuntu”

Part of gaining access to a system remotely is attacking default usernames and
simple passwords. Removing default usernames and switching to named user
accounts also has the added benefit of accountability of user actions. When an
account is shared it is difficult, if not impossible, to determine who exactly
performed the actions that may have led to a disruption in service. It is also a
good idea to install “libpam-passwdqc”, which will ensure that user passwords
meet a minimum security requirement. Run the commands below to install
passwdqc, create a new user, add the user to the sudo group (if required), logout
as “ubuntu” user, login with the new user, and remove the default “ubuntu” user.

ubuntu@tb3:~$ sudo apt install libpam-passwdqc

ubuntu@tb3:~$ adduser yourNewUser

ubuntu@tb3:~$ sudo usermod -a -G sudo yourNewUser

yourNewUser@tb3:~$ sudo deluser --remove-home ubuntu

http://cdimage.ubuntu.com/releases/18.04/release/ubuntu-18.04.3-preinstalled-server-arm64+raspi3.img.xz

4

SSH hardening

SSH is the defacto method for connecting to a Linux server. SSH, as most know,
allows for encrypted communication between client and server. However, since it
does allow remote access, it also is a target for attackers. Attackers will try to
perform brute force password attacks aimed at SSH connections. This is prevalent
in attacks like those of the Mirai Botnet that tried a static list of 60 usernames
and passwords to compromise hosts.

To prevent that type of attack, you can configure two types of mitigation;
requiring ssh keys and a tool for detecting and blocking these attacks.

First, you need to generate an ssh key on your workstation and install the public
ssh key on the TurtleBot3. On the workstation, run the ssh-keygen command:

ssh-keygen -t rsa -b 4096

When it asks you for the key passphrase, make sure to use a passphrase. This will
encrypt the key on disk with that passphrase, which means if someone stole your
private key, they would still need to know your passphrase to use it.

Next, you need to distribute the new ssh key to your TurtleBot3, and you do that
via a command called “ssh-copy-id”

ssh-copy-id -i ~/.ssh/id_rsa.pub yourNewUser@tb3

Now that you have a key on TurtleBot3, you can proceed with configuring ssh
daemon options in “/etc/ssh/sshd_config”. The daemon allows for extensive
configuration, and to get a better understanding of the available options, run
“man sshd_config”. To secure your ssh sessions, you will set the following options:

PermitRootLogin No

X11Forwarding no

PasswordAuthentication no

If you have users with no shell access, you can additionally disallow Transmission
Control Protocol (TCP) and agent forwarding. Keep in mind that users with shell
access can install their own forwarders.

AllowTcpForwarding no

AllowAgentForwarding no

Restart sshd
sudo service ssh restart

If you have made a mistake you may no longer be able to ssh into the TurtleBot3.
In the event this happens, you can attach a keyboard and monitor to the
Raspberry Pi and revert the changes made in sshd.

Next, you will want to install “sshguard” to prevent users from performing ssh
brute force attacks. Why is this necessary after requiring keys? A Denial of Service
(DoS) can be achieved by continual login attempts from a password attack. A tool
like sshguard will block the requests to login at the firewall after several failed
logins over a short period.

sudo apt install sshguard

5

Firewall

The ideal robotics network would be an isolated Virtual Local Area Network
(VLAN) with Access Control Lists (ACL) limiting inbound and outbound traffic.
This would be similar to the way SCADA environments have typically been
deployed. With the truly distributed nature of robots, this is not often the case.
Robots must coexist with other WiFi guests. In this case, it is necessary to apply a
rule set, allowing in only ssh. To do that run “sudo ufw limit ssh”

jsmith@tb3:~/$ sudo ufw limit OpenSSH; sudo ufw enable

Rules updated

Rules updated (v6)

Note that “ufw allow ssh” would also work, but using “ufw limit”, we get an extra
benefit. This way, the firewall will stall brute-force password attacks because it
will start throttling new connections if it receives too many.

Home directory

The default home directory permissions on Ubuntu allow users to share files in
their home directories. To prevent users from accessing other users’ files, the
following changes can be made.

sudo chmod 0750 /home/*

sudo sed -i.orig -e ‘s/=0755/=0750/’ /etc/adduser.conf

Default umask

File creation and access race conditions are a way users could escalate their access
beyond what they were granted. To help mitigate that, make sure to use “umask”.
Users “umask” sets the file mode creation mask of processes; you can use it to
restrict access to the content a given user generates. To prevent users from
accessing each others files, run;

echo “umask 077” >> /etc/profile

Since not all shells interpret the “/etc/profile” file, you should also add the
following line into “/etc/pam.d/login” -

session optional pam_umask.so umask=0077

While the options above set the umask for children of “bash” or PAM sessions,
don’t rely on your parent process umask in your ROS code - always set your
process umask explicitly (type “man 2 umask” in your console for more
information on using umask in your code).

6

Unattended upgrades

Part of overall security hygiene is to patch security vulnerabilities in a timely
manner. As ROS is based on Ubuntu, you can keep up to date with security
patches by enabling unattended upgrades. All you have to do is make sure that
the options below are uncommented in “/etc/apt/apt.conf.d/20auto-upgrades”

APT::Periodic::Update-Package-Lists “1”;

APT::Periodic::Unattended-Upgrade “1”;

This will periodically refresh the package list and upgrade packages that have
security patches available. Although auto-upgrade for most packages will
require no reboot, there are going to be updates that require restarts. To see if
any upgrades need a reboot, you can periodically check by running the
command below:

jsmith@dev:~$ ssh jsmith@tb3 cat /var/run/reboot-required.pkgs

linux-base

In this case, the “linux-base” upgrade needs a reboot; if no packages require a
reboot, the file will not exist.

Disabling USB

Universal Serial Bus (USB) has been around for a long time as a convenient and
quick way to expand system peripherals. This easy expansion, unfortunately,
made way for USB devices that can be used for malicious intent. A couple of
examples would be PoisonTap or Responder based attacks that can run on a
Raspberry Pi Zero, Hack5 Turtle, or USB Armory.

One way to prevent USB abuses on your robot is to disable various USB types of
devices if you are not using them. To check if you can disable individual USB types
of devices, run:

jsmith@tb3:~$ egrep -e “USB_NET_DRIVERS=” -e “USB_STORAGE=” -e “USB_HID=”

-e “USB_SERIAL=” /boot/config-̀ uname -r̀

CONFIG_USB_NET_DRIVERS=y

CONFIG_USB_HID=y

CONFIG_USB_STORAGE=y

CONFIG_USB_SERIAL=m

Anything marked with a “=m” can be disabled, and anything marked with a “=y”
can’t because “y” means that the driver is compiled into the kernel. The example
above is from a TurtleBot3 with a RaspberryPi 3+, and unfortunately, those
modules need to be compiled into the kernel. The only thing we could disable is the
serial devices, but the TurtleBot3 uses that module for the LiDAR communication.

https://samy.pl/poisontap/
https://room362.com/post/2016/snagging-creds-from-locked-machines/

7

We’ll return to the Raspberry Pi based TurtleBot3, but if your robot is based on a
different architecture, the kernel options could be different. For example, the
options on the x86_64 architecture are below.

jsmith@x86_64:~$ egrep -e “USB_NET_DRIVERS=” -e “USB_STORAGE=” -e “USB_

HID=” -e “USB_SERIAL=” /boot/config-̀ uname -r̀

CONFIG_USB_NET_DRIVERS=m

CONFIG_USB_HID=m

CONFIG_USB_STORAGE=m

CONFIG_USB_SERIAL=m

USB drivers are compiled as modules, therefore, we can disable individual types
of devices. Starting with Human Interface Devices (HID), if you want to prevent
someone from plugging in a keyboard or other HID devices, then block the
module from loading.

jsmith@x86_64:~$ sudo rmmod usbhid

jsmith@x86_64:~$ echo “blacklist usbhid” |sudo tee -a /etc/modprobe.d/

blacklist.conf

To prevent someone from plugging in a storage device such as a USB disk or a
flash drive, block off the modules from loading. Copy this script into your console
and run it:

for i in usb-storage usb_storage; \

do sudo rmmod $i ; echo “blacklist $i” |sudo tee -a /etc/modprobe.d/

blacklist.conf;\

done

Disallow USB serial devices by blacklisting the USB serial driver:

jsmith@x86_64:~$ sudo rmmod usbserial

jsmith@x86_64:~$ echo “blacklist usbserial” |sudo tee -a /etc/modprobe.d/

blacklist.conf

Disallow USB networking devices by blacklisting USB networking modules:

find /lib/modules/̀ uname -r̀ //drivers/net/usb -type f -name \.ko | xargs

basename -s .ko | sed s’/ /̂blacklist /’ | sudo tee -a /etc/modprobe.d/

blacklist.conf

Disallow all USB devices, effectively disabling USB functionality:

for i in $(find /lib/modules/̀ uname -r̀ -name usb -type d);\

do find $i -name *.ko | sed ‘s/.ko$//g’ | awk -F/ ‘{print

“blacklist”,$(NF-0)}’;\

done | sudo tee -a /etc/modprobe.d/blacklist.conf

Now let’s return to the Raspberry Pi based TurtleBot3. While you can do the
above steps to disable the loading of all USB device modules, there are some
limitations that you should take into consideration. If you recall the kernel
configuration, some crucial modules are compiled into the kernel.

CONFIG_USB_NET_DRIVERS=y

CONFIG_USB_HID=y

CONFIG_USB_STORAGE=y

8

Therefore, we can’t prevent someone from plugging in HID devices, and we
can’t preclude storage devices from being added. There is a bit more of a grey
area for network devices. While the “USB_NET_DRIVERS” compiles the “usbnet”
module into the kernel, we can’t blacklist it. But usbnet is only a “base” driver,
and a network device will require an additional chip-specific driver. And those
you can blacklist, see above on the topic of “blacklisting USB networking
modules”. Keep in mind that the Raspberry Pi 3+ ethernet interface is
connected to the internal USB bus. If you blacklist all USB network modules,
your ethernet will also be disabled.

As we can’t prevent people from plugging in storage and HID devices with
blacklisting since modules are compiled in, what other options are there? You can
turn off the USB port power on your TurtleBot3. Get the hub-ctrl utility. You will
have to compile it from source. If you compile the software on the robot it is best
practice to remove the compiler before deploying the robot. By leaving compilers
on the robot, an attacker who gained system level access would have the ability
to compile malicious software.

Now that you have the binary on your TurtleBot3, for example, to turn off the
power on Hub 1 to USB Port 2 and 3 run:

jsmith@x86_64:~$ sudo ./hub-ctrl -h 1 -P 2 -p 0

jsmith@x86_64:~$ sudo ./hub-ctrl -h 1 -P 3 -p 0

Try plugging in a keyboard or a flash drive; nothing should happen. See the
diagram below to determine the location of Port 3 on Raspberry Pi3 +.

Raspberry Pi3 + Port Location

On to the remaining two USB plugs on the left. That’s where you should connect
the LiDAR and the OpenCR board. The ethernet, OpenCR, and LiDAR will all be on
the USB Port 1, and you should physically prevent tampering with the two
plugged cables. This is where another limitation of Raspberry Pi3 + comes into
play. You can not turn off the power with hub-ctrl to USB Port 1, because for that
to work, no devices can actually be plugged into the port when you turn off the
power. If a device is plugged in, the USB system will just reinitialise the device, so
the port won’t actually lose power. But it’s not possible to unplug all devices on
Port 1. The ethernet device is electrically wired internally to Port 1; thus, it
prevents the power from being turned off to Port 1. And because port 1 has two
USB plugs, those two plugs will always be powered. Therefore, they will require
some physical anti-tampering method.

USB

USB

USB

USB

USB Port 3

USB Port 2

USB Port 1

Ethernet

https://github.com/codazoda/hub-ctrl.c

9

Disabling Internet Protocol v6

By default, all interfaces come up with an ipv6 address. If you are not using ipv6,
you should disable it. Not because there is anything wrong with ipv6 but
because you want to reduce the number of pathways through which your robot
could be attacked.

jsmith@tb3:~$ ip addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

 link/ether bc:a8:a6:fd:43:be brd ff:ff:ff:ff:ff:ff

 inet 192.168.128.46/24 brd 192.168.128.255 scope global dynamic

noprefixroute eth0

 valid_lft 48058sec preferred_lft 48058sec

 inet6 fe80::ae66:f8fd:c277:efba/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

To disable ipv6 add the following lines into “/etc/sysctl.conf”

net.ipv6.conf.all.disable_ipv6=1

net.ipv6.conf.default.disable_ipv6=1

net.ipv6.conf.lo.disable_ipv6=1

And then run:

jsmith@tb3:~$ sudo sysctl -p

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

Verify that ipv6 is gone:

jsmith@tb3:~$ ip addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

 link/ether bc:a8:a6:fd:43:be brd ff:ff:ff:ff:ff:ff

 inet 192.168.128.46/24 brd 192.168.128.255 scope global dynamic

noprefixroute eth0

 valid_lft 48058sec preferred_lft 48058sec

If your robot is based on some other architecture, like x86_64, for example, this
step is not needed. But in the case of the TurtleBot3 based on the Raspberry Pi 3,
paste the lines below in your console. This will make sure that the “sysctl” is
executed after every reboot.

cat <<EOF | sudo tee -a /etc/rc.local

#!/bin/sh -e

sysctl -p

EOF

sudo chmod +x /etc/rc.local

10

Disabling Bluetooth

Bluetooth is a convenient way to connect devices wirelessly, but there have been
exploits in the past against Bluetooth. For example, the BlueBorne exploit doesn’t
even need to pair with a Bluetooth device or even need the device to be
discoverable. If your TurtleBot3 is not using Bluetooth for any function, you
should disable it. Paste the lines below in your terminal, the script snippet will
find all Bluetooth kernel modules and will add them to the modules blacklist.

for i in $(find /lib/modules/̀ uname -r̀ -name bluetooth -type d);\

	 do find $i -name *.ko | sed ‘s/.ko$//g’ | awk -F/ ‘{print

“blacklist”,$(NF-0)}’;\

done | sudo tee -a /etc/modprobe.d/blacklist.conf

Some modules might already be loaded, so a reboot will clear those out, but if
you don’t want to reboot, you can modify the above script to remove those
modules from memory.

for i in $(find /lib/modules/̀ uname -r̀ -name bluetooth -type d);\

	 do find $i -name *.ko | sed ‘s/.ko$//g’ | awk -F/ ‘{print $(NF-0)}’ | xargs

rmmod ;\

done

Keep in mind that some modules might be in use by others in this list and won’t
be removed on the first try, repeat the process until all lines say

rmmod: ERROR: Module [name] is not currently loaded

Disabling core dump

Getting a core dump from an application when it experiences a crash is a great
way to debug issues in applications. The size of the core dump can vary widely
from application to application; it all depends on the memory footprint of the
application. The assumption is that an application would seldom experience a
problem, but when it does, it will provide memory contents for the developers to
look through. While that assumption is reasonable for development, once you
move your robot to production, you could face a Denial of Service (DoS) attack.
When a process crashes, it’s generally assumed that the process is restarted to
restore the particular service. For example, the systemd will do that automatically
for you. Suppose an attacker finds a way to trigger this application crash through
your exported interface, or worse, if they find a way to script it. They could cause
the particular service to crash and dump the core hundreds of times per second,
which would fill up your storage. The entire robot then will be subject to all sorts
of unpredictable consequences as all services start behaving in unexpected ways
due to a lack of space. By disabling the core dump, the attacker can only affect
the buggy service and not the entire robot system. To disable the core, add the
following lines to “/etc/sysctl.conf”:

kernel.core_uses_pid = 0

kernel.core_uses_pid = 0

And run: sudo sysctl -p:

sudo sysctl -p

https://www.armis.com/blueborne/

Learn more about Ubuntu and robotics here:
https://ubuntu.com/robotics

Disabling WiFi

If your production robot is stationary and uses an ethernet connection instead of
wireless, you should disable the wireless chip. On the TurtleBot3 running
RaspberryPi, you do that by adding following lines into “/etc/modprobe.d/
blacklist.conf” and reboot.

blacklist brcmfmac

blacklist brcmutil

blacklist cfg80211

Disabling ethernet

In the event your production robot uses the WiFi connection instead of the wired,
then disable the wired connection. Add the following lines into “/etc/
modprobe.d/blacklist.conf” and reboot.

blacklist lan78xx

Conclusion

As you prepare your robot for production, security shouldn’t be an afterthought.
Putting an upfront effort can, in the long run, save you resources, and a headache
that comes with a security breach. As our world becomes more and more
connected, a paradigm shift from “if we become a target” to “when we become a
target” warrants a proactive approach to security, and remember, security is not a
single on/off switch. Security is many smaller actions that on their own, don’t
necessarily have a significant impact, but it builds strength in numbers. A large
number of breaches are opportunistic. If you put up a certain amount of barriers,
the attackers will move on to a weaker target.

© Canonical Limited 2020. Ubuntu, Kubuntu, Canonical and their associated logos are the registered trademarks
of Canonical Ltd. All other trademarks are the properties of their respective owners. Any information referred
to in this document may change without notice and Canonical will not be held responsible for any such changes.

Canonical Limited, Registered in England and Wales, Company number 110334C Registered Office:
12-14 Finch Road, Douglas, Isle of Man, IM99 1TT VAT Registration: GB 003 2322 47

https://ubuntu.com/robotics

